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Experimental Basis of RMP ELM Control
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Complete ELM Suppression by n=3 RMP is obtained
in DIII–D by n=3 RMP, at ITER pedestal collisionality

• Resonance window
Δq95 for suppression
increases with I-coil
current

– At 4 kA t, ELMs
suppressed for
Δq95 ≈ 0.50

– At 3 kAt, ELMs
suppressed for
Δq95 ≈ 0.30

• q95 ramping slowly

• Also suppressed at
q95 ≈ 7.2 resonance
with lower-pitched
I-coil connection

I-coil 4 kAt

q95
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DIII–D  I-coil Field is Example of Successful
n=3 RMP Poloidal Harmonic Fourier Spectrum
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δBm,n down
by 1/2 at
√ψ ≈ 0.71

ITER-similar shape
in DIII–D

Magnetic lines in outer
plasma rotate together;
∴ resonant ridge aligns

with q(r)

I-coil

I-coil

• n=1 RMPs in DIII–D and JET reduce ELM sizes,
but lock plasma before ELMs are suppressed

pitch-resonant
ridge

3 large non-resonant
side lobe ridges
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DIII–D Provides a Reference for n=3 ELM-Control:
Island Overlap and Chirikov Parameter

• Chirikov parameter > 1
outside of √flux > √0.90, more
generally > √0.85

n = 3 island widths n = 3 Chirikov parameter

q

Sqrt(normalized poloidal flux) Sqrt(normalized poloidal flux)0.5 1

1

3

0.5 1

• Near edge, high shear
makes islands narrower,
but there are more m/3
rational surfaces and more
island overlap near edge.
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Maximum ELM Size Decreases as Island Overlap Region
Width ΔChir>1 Increases. Sharp Change to Very Small ELMs.

• Maximum ELM
size decreases
with overlap
region width to
ΔChir>1 = 0.16

• Factor of 10
decrease in
maximum ELM
size at q95=3.6 for
ΔChir>1 > 0.165

• No detectable
ELMs for
ΔChir>1 > 0.2

ΔChir>1
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RMP Associates with Plasma Profile Changes
in the Region  0.85 < ΨN < 0.95

Evans, SFP Talk
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Peeling-Ballooning ELM Stability Analysis Shows
RMP Moves Operating Point Into Stable Region

Stable

• ELM suppression is
consistent with linear
P-B stability (ELITE)

Figure is for low-δ, 
ITER Similar Shape
(ISS) plasmas

• Operating point deeper
into stable region at
higher RMP strength
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Features of Experimental RMP ELM Control

• RMP reduces plasma rotation, too much locks plasma (n = 1, 2)

• Complete ELM Suppression with n = 3, I-coil geometry, sufficient RMP, at
ITER-like low pedestal collisionality (νe* ~ 0.1)
• Reduced ELM amplitudes at νe* ~ 1

• Complete suppression not seen so far with single-row array

• Reduced ELM amplitudes for n = 1, 2 (JET, DIII–D)
• Plasma locks before suppression

• Critical Resonant Magnitude; somewhat like Chirikov parameter > 1
across outer 10% — 20% of ΨN

• Error field and added n=1 fields contribute, too (DIII–D)

• ELMs stabilized (peeling-ballooning) by reduced pressure and
bootstrap current in pedestal at low νe*

• Data inconsistent with classic stochastic-B transport
• Little Te decrease; get particle transport instead
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RMP Coils for ITER ELM Control



Considerations for ELM Control Coils for ITER

• We followed the existing paradigm and required:

• Keep Chirikov parameter > 1 outside of √flux > √0.85

• Work over a range of plasma q (i.e., ITER Scenarios 2, 3, 4)

• Reduce resonant δB as rapidly as possible into core

• I.e., 2-fold reduction of δB (4-fold in δB2) by √flux = √0.64 = 0.8

• Reduce δB elsewhere as much as possible in physical and spectral
space

• A well-focused, movable, pitch-resonant spectral ridge in pedestal can
meet these requirements

• New data coming from JET, DIII–D, MAST and others

• Numerical modeling also coming



ITER Error Correction Coils make ~4.5 x Larger NON-
resonant lobes than resonant field: Unsatisfactory

• ITER correction array:  6 Top + 6 Mid + 6 Bot coils attached to PF coils

• Case of 6 mid coils only (shown) is best

• Top & Bot coils mainly just add to one or the other non-resonant lobe

• Worse non-resonant / resonant at higher q, due to rapidly vanishing higher-
|m| harmonics

17 G 74 G



A Better ITER RMP “Reference Case”:   n = 3  from
4 rows of 18 coils toroidally, between blanket & wall

Using 4x18 coils

          n = 3

Half max. at √ψ ≈ 0.62

One 60% side lobe

33 kA peak

(B⋅n)(surface averaging weight f(θ))

dφ = q dθ

Using ITER Scenario 2,
low-q, hi-β equilibrium

ChirikovIslands

Coil currents phased to favor
a single resonance



Higher-n fields penetrate less deeply, but side
lobe magnitudes increase for n > 4

          n = 4

Half max. at √ψ ≈ 0.78

One 65% side lobe

30 kA peak

          n = 5

Half max. at √ψ ≈ 0.82

~ 100% side lobe

Current still 30 kA, but
it increases at n ≥ 6

Using 4x18 coils

n = 4 n = 5



Lower-n fields penetrate more deeply and require
more current to meet pedestal Chirkov goal

          n = 1

Half max. nonexistent

Two large side lobes

120 kA peak

          n = 2

Half max. very deep

~ 75% side lobe

50 kA peak

Using 4x18 coils

n = 1 n = 2



Summary of toroidal mode (n) scan in
4 x 18 coils on vessel inner wall

• Low-n fields make few islands, must apply large b, make too much unwanted
field components

• High-n fields easily make Chirikov > 1, but eventually make unwanted side
lobes in finite coil arrays

• n = 4 seems like best compromise and was used in most of the study



4 x 9 coils toroidally yield field spectra up to n=4
not much different from 4 x 18 coils.  Prefer 9!

4 x 9 coil set, n=4 Compare with  ⇒    previous 4 x 18 coil set, n=4

    n = 4, only 9 coils/row

Very similar resonant lobe

Two 70% side lobes

43 kA peak

previous 4 x 18 coils, n = 4

Repeat previous n=4 plot

One 65% side lobe

30 kA peak

Using 4x9 coils

n = 4 n = 4



Refined Current Distribution on 4 x 9 Coils
Makes Mainly n=4 Harmonics Efficiently

• This more
recent
calculation
aligns the
resonant lobe
more
effectively

• Although approximation of
n=4 on just N=9 coils is
rough, the relative phases
of currents in the 4 rows are
chosen to make all 4
periods nearly equal from
B-line point of view



4 x 9 coils on vessel wall also work for ITER
Scenario 4 AT plasma (q95 ~ 5)

• Only 11 kA; it’s easy to make many small islands in high-q edge

• One side lobe at ~100% of pedestal lobe



Two-Row coil sets give large spectral side lobes

          n = 4

Half max. at √ψ ≈ 0.68

One large side lobe

72 kA peak

          n = 4

Half max. at √ψ ~ 0.8

Two large side lobes

80 kA peak

2x9 coils 2x9 coils



Coils wound on Top and Mid Port Plugs have little
control of spectrum, because Top’s field is weak

          n = 4

Half max. at √ψ ≈ 0.66

Side lobes > main lobe

280 kA peak

9 top + 9 mid coils

ChirikovIslands

9 Top + 9 Mid coils

Moiré
maximum

Moiré
minimum



Neutral Beams take 4 of 18 contiguous ports,
leave  only 7 mid-plane port plugs for coils

9 top + 7 mid coils

        n = 4

Nearly same as

9 top + 9 mid

port plug coils

          n = 4

Current distribution Moiré
minimum was aligned with
the Mid port gap to
minimize effect missing
ports

Moiré
maximum

Moiré
minimum



Multiple-n Fields



Error Fields and Added n=1 can fill in some gaps
between n=3 islands and Increase Stochasticity

• Stochastic region
from q~3 surface
outward

• Additional tests
with reduced n=3
showed that
added n=1 from
C-coil can bring
back ELM
suppression

Mildly
Stochastic,
Remnant
Islands

Highly
Stochastic
Region

Chirikov fit

8/3

7/3

3/1

5/2

2/1

Poloidal Angle (deg)

q(Ψ)

n=3
n=2
n=1

M.E. Fenstermacher



n=3 + n=4 Current Distribution in ITER 4 x 9 Array on
Vessel Gives More Island Overlap at Same 40 kA

• Denser set of islands and good
overlap for same peak coil
current as from a single
harmonic current distribution
gives finer-scale stochasticity.

• Will plasma really prefer this?



An n=4 Distribution in 4 x 9 Array with All Moiré
Aligned along a B-line Adds n=5 Resonant Field

• Same 40 kA peak current
makes combined n=4 + n=5
B-field, finer stochasticity, than
“balanced” distribution shown
earlier

• Favorable tradeoff?



Most Proposed RMP Coils Have Large Relative
Non-Resonant Braking Factor (NRBF)

evaluated away from edge and magnetic axis

 

Some Indicators of Side Effects of Candidate Proposed ITER ELM Control Coils  

 

Indicator 

Name 

ITER Error 

Correction 

Mid coils, n=3 

225 kA·t peak 

Vessel Wall 

4 rows of 9 coils 

n=4 

55 kA·t peak 

Vessel Wall 

18 Mid, Picture 

Frame, n=4 

100 kA·t peak 

0.5 m coils on 

14 Mid Port 

Plugs, n=4 

310 kA·t peak 

14 Mid & 18 

Top Port Plugs 

n=4 

300 kA·t pk 

Bres/B0 [10-4] 3.3 4.9 4.9 4.7 5.0 

Radius for  

half Bres [! ] 

Never 

drops to half 

0.77 0.61 0.60 0.64 

q at half Bres
 Never 

drops to half 

1.45 1.05 1.05 1.1 

Bres at q = 2 

[10-4 T] 

17 20 21 21 20 

Non-Resonant 

Braking  

Factor [10-8] 

3200 595 2900 3100 3200 
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Need to learn if this is important or not



Summary and Conclusions (1)

• Physics of ELM control by δB is not yet well understood

• Experiments demonstrate feasibility, provide some guidance

• Cannot prescribe necessary & sufficient conditions

• Should choose a coil set that can meet a range of possibilities

• ITER Error Field Correction Coils appear unsatisfactory

• Resonant components stay large into magnetic axis (vacuum field)

• Very large non-resonant harmonics

• ELM Control Coils on Vessel Wall, behind blanket:

• Close enough and extended enough to tailor B-field
• Analogous to phased array antenna

• Can adjust to plasma q

• n=4 seems to be a good tradeoff



Summary and Conclusions (2)

• A wall mounted array of 4 rows of 9 coils each has the flexibility to apply
ELM control fields with desired spectral content over a range of q, as
demonstrated here by examples of predominantly resonant spectra.

• 4-row array limits side lobes rather well up to n = 4, even
with only 9 coils toroidally, and needs only 40~50 kA peak

• ELM Control Port Plug (Top & Mid) Coils:

• Large non-resonant harmonics at low |m|

• Top & bottom port plug coils make little contribution; abandoned

• Reduction of mid-plane band by NB ports has limited effect

• Non-resonant braking may be an important issue

• Not yet well understood and verified. Needs physics attention.


