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Experimental Basis of RMP ELM Control
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Complete ELM Suppression by n=3 RMP is obtained

in DIlI-D by n=3 RMP, at ITER pedestal collisionality
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DIlI-D I-coil Field is Example of Successful

n=3 RMP Poloidal Harmonic Fourier Spectrum

3 large non-resonant ITER-similar shape
side lobe ridges in DIII-D

pitch-resonant

g— -

D669 =SNEA KEW £=u ig

o Magnetic lines in outer
plasma rotate together;
-. resonant ridge aligns
® n=1 RMPs in DIII-D and JET reduce ELM sizes, with q(r)
but lock plasma before ELMs are suppressed

20 10 N 10 20
Poloidal Mode Number, m. Neg m are Left, Pos m are Right-Handed
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DIlI-D Provides a Reference for n=3 ELM-Control:

Island Overlap and Chirikov Parameter

6o DD ELM-Suppression, FCoil,n=3, Evenat 39 KA . '3 orrr.. DSDELM-Suppression, FCoil n=3, Evenat39kA
| n = 3 island widths N ~ n=3Chirikov parameter
. s :
q o s20-
. o ; _____
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0.5 Sqri(normalized poloidal flux) - 7 Sqgrt(normalized poloidal flux) —
* Near edge, high shear ..
K gl d g ® Chirikov parameter > 1
makes islands harrower, outside of vflux > v0.90, more
but there are more m/3 generally > v0.85

rational surfaces and more
island overlap near edge.
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Maximum ELM Size Decreases as Island Overlap Region

Width A.,.., Increases. Sharp Change to Very Small ELMs.

\  Maximum ELM
size decreases

with overlap
region width to
Achir>1 = 0.16

e Factor of 10
decrease in
maximum ELM

size at q45;=3.6 for
Achir>1 > 0.165

o
N

o
N

* No detectable
ELMs for
Achirs1 > 0.2
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RMP Associates with Plasma Profile Changes

in the Region 0.85 <W¥, <0.95
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Peeling-Ballooning ELM Stability Analysis Shows

RMP Moves Operating Point Into Stable Region

— | J I I 1 I 1 I 1 | 1 ) I ) I
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KV; A ELMing - No RMP

N - @ RMP ELM Free 1 ® ELM suppression is
_¥ consistent with linear
¥ A P-B stability (ELITE)
=06 ] Figure is for low-9,
> ITER Similar Shape
'% i | (ISS) plasmas

p @ N

§ % %‘; ®* Operating point deeper
504 | == s into stable region at
o > 2 higher RMP strength
3 E>)

o2 <
E 1 1 I 1 1 1 1 l 1 1 1 1 I 1 1
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Normalized Pressure Gradient (o) P. Snyder
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Features of Experimental RMP ELM Conirol

® RMP reduces plasma rotation, too much locks plasma (n =1, 2)

® Complete ELM Suppression with n = 3, I-coil geometry, sufficient RMP, at
ITER-like low pedestal collisionality (v.* ~ 0.1)

®* Reduced ELM amplitudes at v_* ~ 1

® Complete suppression not seen so far with single-row array

® Reduced ELM amplitudes for n = 1, 2 (JET, DIlI-D)
®* Plasma locks before suppression

® Critical Resonant Magnitude; somewhat like Chirikov parameter > 1
across outer 107% — 20% of ¥,

* Error field and added n=1 fields contribute, too (DIlI-D)

* ELMs stabilized (peeling-ballooning) by reduced pressure and
bootstrap current in pedestal at low v_*

* Data inconsistent with classic stochastic-B transport
¢ Little Te decrease; get particle transport instead
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RMP Coils for ITER ELM Control
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Considerations for ELM Control Coils for ITER

® We followed the existing paradigm and required:

® Keep Chirikov parameter > 1 outside of vflux > v0.85

® Work over a range of plasma q (i.e., ITER Scenarios 2, 3, 4)

® Reduce resonant B as rapidly as possible into core
® |.e., 2-fold reduction of 3B (4-fold in 8B?) by vflux =v0.64 = 0.8

® Reduce OB elsewhere as much as possible in physical and spectral
space

® A well-focused, movable, pitch-resonant spectral ridge in pedestal can
meet these requirements

® New data coming from JET, DIll-D, MAST and others
® Numerical modeling also coming
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ITER Error Correction Coils make ~4.5 x Larger NON-

resonant lobes than resonant field: Unsatisfactory

___ITER, Br,6 EFC Mid Coils for RMP, n=3, l=¢225kA

Weighted IBylat q =3 Surface [au] .- n i
s 100 [ ool
F=d ] [
jual ]
5 g ]
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“ o0 RN . O e o0
Poloidal Mode Number m Toroidal angle (deq)

* ITER correction array: é Top + 6 Mid + 6 Bot coils attached to PF coils
® Case of 6 mid coils only (shown) is best
* Top & Bot coils mainly just add to one or the other non-resonant lobe

* Worse non-resonant / resonant at higher q, due to rapidly vanishing higher-
|m| harmonics
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A Better ITER RMP “Reference Case”: from
toroidally, between blcmke’r & waII
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fields peneirate less deeply, but side
lobe magnitudes increase for n > 4
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Wy

n= 4 ziﬂ; { n= 5
Half max. at vy = 0.78 Half max. at v = 0.82

~ 100% side lobe

Current still 30 kA, but
itincreasesatnzé6

One 65% side lobe 2L
30 kA peak I ==

Using 4x18 coils
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fields peneirate more deeply and require
more current to meet pedestal Chirkov goal
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Proposed Positions lor ITER
5 AWM / ELM Control Coils
T = e

n=1 iy F‘“‘M“\\\ n=2
Half max. nonexistent H o Half max. very deep
Two large side lobes 2 , ' ~ 75% side lobe
120 kA peak K;ﬁ// 50 kA peak

Using 4x18 coils
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Summary of toroidal mode (n) scan in

4 x 18 coils on vessel inner wall

4 largest vpsi (%) where
O side lobe b = b2
10 N (%) / o
-u“‘ ] "_._-" '
50 |- .
[ I PR Pr&@’ﬁﬂ (107)
. B /) CE T
current (kA-turn)
ﬂ: s ; | | 5
1 2 3 4 5

* Low-n fields make few islands, must apply large b, make too much unwanted
field components

® High-n fields easily make Chirikov > 1, but eventually make unwanted side
lobes in finite coil arrays

®* n =4 seems like best compromise and was used in most of the study
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toroidally yield field spectra up to n=4

not much different from 4 x 18 coils. Prefer 9!

4 x 9 coil set, n=4 Compare with = previous 4 x 18 coil set, n=4

FIW coils: B 2 s
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Proposed Positions lor ITER
5 AWM / ELM Control Coils
T = e

n =4, only 9 coils/row H {ﬂ“\\\\ previous 4 x 18 coils, n =4
Very similar resonant lobe . ! Repeat previous n=4 plot
Two 70% side lobes RN iR /1 One 65% side lobe
43 kA peak \'*1?:';/ 30 kA peak

8 8
R m]

Using 4x9 coils
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® This more
recent
calculation
aligns the
resonant lobe
more
effectively
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Refined Current Distribution on 4 x 9 Coils
Makes Mainly n=4 Harmonics Efficiently
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* Although approximation of
n=4 on just N=9 coils is
rough, the relative phases
of currents in the 4 rows are
chosen to make all 4
periods nearly equal from
B-line point of view
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coils on vessel wall also work for ITER
Scenario 4 AT plasma (qq; ~ 5)

it
onjen Xep (p'w)ig

X

Poloidal Harmonic Number m
® Only 11 kA; it's easy to make many small islands in high-q edge

®* One side lobe at ~100% of pedestal lobe
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SQRT (Normalized Flux)

coil sets give large speciral side lobes

only: Br, 72 kA, addangl=(-77 +127)}
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SQRT (Normalized Flux)

Coils wound on

have little

control of spectrum, because Top's field is weak
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SQAT {Normalized Flux)

Neuiral Beams take 4 of 18 contiguous ports,

-plane port plugs for coils

n= d, ETER {!M’}G Jamschitz Por!CcEis, Br, {lop mid} (+280,4280)kA, addangl=(-10-110)deg

e

Poloidal Mode Number, m. Neg m are Left, Pos m are Right-Handed
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Error Fields and Added n=1 can fill in some gaps

between n=3 islands and Increase Stochasticity

' E

2 1.0 nghly _ E
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* Stochastic region
from g~3 surface
outward

¢ Additional tests
with reduced n=3
showed that
added n=1 from
C-coil can bring
back ELM
suppression

M.E. Fenstermacher
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n=3 + n=4 Current Distribution in ITER Array on

Vessel Gives More Island Overlap at Same 40 kA
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An n=4 Distribution in 4 x 9 Array with All Moiré

Aligned along a B-line Adds n=5 Resonant Field

ITER, Br, 2*(9+9) BV Coils, 40kA(-50,

+217 +193)deg, n=4 distro.
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Most Proposed RMP Coils Have Large Relative

Non-Resonant Braking Factor (NRBF)

2
NRBF = ) nz(‘B/Bo,o - n) evaluated away from edge and magnetic axis

n=0
Some Indicators of Side Effects of Candidate Proposed ITER ELM Control Coils
ITER Error Vessel Wall Vessel Wall 0.5 m coils on 14 Mid & 18
Indicator Correction 4 rows of 9 coils| 18 Mid, Picture 14 Mid Port Top Port Plugs
Name Mid coils, n=3 n=4 Frame, n=4 Plugs, n=4 n=4
225 kA-t peak | 55 kA-t peak 100 kA-t peak | 310 kA-t peak 300 kA-t pk
B../B, [10] 3.3 4.9 4.9 4.7 5.0
Radius for Never 0.77 0.61 0.60 0.64
half B, [Vy] | drops to half
q at half B, Never 1.45 1.05 1.05 1.1
drops to half
B, atq=2 17 20 21 21 20
[10* T]
Non-Resonant 3200 595 2900 3100 3200
Braking
Factor [107%]

Need to learn if this is important or not
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Summary and Conclusions (1)

® Physics of ELM control by 6B is not yet well understood
* Experiments demonstrate feasibility, provide some guidance
®* Cannot prescribe necessary & sufficient conditions
* Should choose a coil set that can meet a range of possibilities

* ITER Error Field Correction Coils appear unsatisfactory
®* Resonant components stay large into magnetic axis (vacuum field)
* Very large non-resonant harmonics

®* ELM Control Coils on Vessel Wall, behind blanket:

* Close enough and extended enough to tailor B-field
* Analogous to phased array antenna
* Can adjust to plasma q

®* n=4 seems to be a good tradeoff
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Summary and Conclusions (2)

* A wall mounted array of 4 rows of 9 coils each has the flexibility to apply
ELM control fields with desired speciral content over a range of q, as
demonstrated here by examples of predominantly resonant specira.

® 4-row array limits side lobes rather well up to n = 4, even
with only 9 coils toroidally, and needs only 40~50 kA peak

®* ELM Control Port Plug (Top & Mid) Coils:
® Large non-resonant harmonics at low |m|
* Top & bottom port plug coils make little contribution; abandoned
* Reduction of mid-plane band by NB ports has limited effect

®* Non-resonant braking may be an important issue
* Not yet well understood and verified. Needs physics attention.
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